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SUMMARY 

The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. 
With this in view, a k-E model with wall functions has been introduced in a mixed finite volumehinite element 
method. The numerical method has been developed to deal with compressible flows but is also able to compute 
nearly incompressible flows. The physical model and the numerical method are first described, then validation 
results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp 
are presented. Comparisons are performed with experimental data and with other numerical results. These 
simulations show the ability of the present method to predict turbulent flows, and this method will be applied to 
simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of 
this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more 
sophisticated turbulence model. 

KEY WORDS: mixed finite elementhnite volume method; flux splitting techniques; compressible turbulent flows; k-8 model; wall 
functions. 

1. INTRODUCTION 

With the advent of high speed computers, numerical simulations of compressible flows in complex 
geometries are becoming of interest for various engineering applications. Practical high speed flows, 
however, are usually turbulent and thus efficient numerical methods with suitable turbulence models 
must be selected to simulate these flows accurately. The algebraic eddy viscosity models still represent 
a common choicelP3 for compressible simulations since their implementation results generally in the 
minimum requirement of computer time and storage, but they lack generality especially for the 
prediction of internal flows in presence of more than one wall. Evaluations of different one point 
closure turbulent models4 (zero, one and two equations models) have shown that there was no apparent 
superiority of one of those models over the others. Some models seemed superior for specific 
experimental test cases and inferior for others. The main advantage of the two equations model is that, 
for the general case when the length scale is not known, the k-E type models provide a more general 
formulation and now are engineering standard. Then, to describe turbulent flows, a k-E model initially 
developed by Launder and Spalding' for incompressible flows has been chosen. The model is only 
valid for large Reynolds number flows and thus must be modified in the vinicity of solid boundaries. 
To avoid the use of a low Reynolds number model, which requires a considerable number of mesh 
nodes in the vicinity of the wall, wall fbnctions6 are introduced as boundary conditions at a small 
distance from the wall. 

To compute supersonic flows with shocks, the numerical scheme should achieve a precise balance of 
a typically very small physical diffusion and of a numerical diffusion required for stability. Many 
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studies have been done for the solution of the Euler and Navier-Stokes and have led to the 
development of efficient solvers. Furthermore, due to the ease with which complex geometries can be 
handled and due to the possibility of enhancing the solution accuracy through local mesh 
refinements,"" we have chosen to use unstructured meshes. Thus, a mixed finite volume/finite 
element method, developed by Derv ie~x '~* '~  to solve the Euler and Navier-Stokes equations on 
unstructured meshes, is used. The stabilization of both acoustic and convective waves is realised by 
applying a flux splitting technique introduced by The success of this method to solve 
compressible Euler flows stimulates us to extend it to turbulent flows using a k-E model with wall 
functions. 

In the first part, the physical model and the governing equations are detailed. In the second part, the 
numerical method and the introduction of the k-E model and boundary treatment are presented. Finally, 
two classical validations cases are presented: an incompressible flow over a backward-facing step and 
an interaction of an oblique shock wave, produced by a ramp, and a turbulent boundary layer. In the 
two cases, the numerical results are compared with experimental and numerical data. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

2.1. Mean Navier-Stokes equations 

The governing equations of the mean flow are obtained by Reynolds averaging the Navier-Stokes 
equations using a Reynolds average (denoted by an overbar) for the density p and the total energy E 
and a Favre average (denoted by a tilde) for the velocity. To solve the closure problem introduced by 
this averaging, the Reynolds stress and the turbulent heat flux are modelled using a Boussinesq 
hypothesis: 

The turbulent viscosity pr is defined as a function of two local turbulent scales: for the k-E model, 
the turbulent kinetic energy k and its dissipation rate E. In two dimensions, the non-dimensional 
Navier-Stokes equations for the mean quantities are written in conservative form: 

- + div(F) = div(R), 

where W represents the mean quantities, F= [F1, F2]  the convective fluxes and R = [Rl, R2] the 
diffusive and turbulent fluxes vectoi 

(2) 
aw 
at 

, F1 = 1 , F 2  = 

PG ) 

where p denotes the fluid mean density, and & the x and y components of the Favre averaged 
velocity and E the mean total energy. The mean pressure p is calculated from the state equation of a 
perfect gas: 
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The diffusive and turbulent fluxes R are given by: 

where ‘7i represents the viscous and turbulent stress tensor (less the normal stress ? p i )  and ij the heat 
flux vector given by: 

The non-dimensional turbulent eddy viscosity is defined by: 

All the quantities have been non dimensionalized using a characteristic velocity scale U, and a 
characteristic length scale L. Re denotes the Reynolds number and Pr is the Prandtl number, which is 
equal to 0.72 for air. Pr, is the turbulent Prandtl number, classically chosen as 0.9, y is the ratio of 
specific heats (1.4 for air) and bk is a constant of the k-E model (chosen as 1.0). 

To use the Euler solver of Roe, a change of variable is introduced on the pressure and on the total 
energy to keep the hyperbolic part of the equations unchanged. The turbulent kinetic energy is added to 
the mean pressure term to define a new pressure p* called effective pressure: 

and to the total energy, to define a new total energy E* 

E* = E +  (-1 +- p z ) .  
3(Y - 1) 

2.2. Equations for the turbulence scales 

be solved for k and z. The modelled equations for k and 
To close the-system of equations for the mean qua_ntities (2), two additional transport equations may 

can be written in conservative form as 

(1 1) 
a wf 
at 
- + div(F’) = div(R’) + H’, 
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where the vector variable W’, the convective fluxes vector F’ = [Fi , Fi] and the diffusion fluxes vector 
R’ = [R’, , R;] are given by: 

(&+:) i R‘, = i R; = 

The vector source term H‘ corresponds to a production and a dissipation term, given by 

pP - I j E  
H ’ =  ( c,, $(E/i)P - c&,p(E2/i) 

where P is the production of turbulent kinetic energy by the mean flow given by 

The classical values of the constants are chosen: 

The above models have been proposed initially for incompressible flows.’ Some simulations have 
proved that the classical k-E model doesn’t predict important characteristics of compressible flows, 
such as the reduced grow& rate of the mixing layer. For compressible flows, additional terms appear 
in the exact equations of k and F. Different modelings of those terms e ~ i s t , ’ ~ ” ~  to take into account 
the effect of compression on the turbulence (as in a shock) and the effect of compressibility (as in a 
supersonic turbulent mixing layer). Some of these models have been tested,” and we have chosen 
the model of Coleman-Mansour,’6 which introduces an additional production term in the F equation 
in terms of the dilergence of the mean flow (compression effect) and an additional compressible 
dissipation in the k equation in terms of a turbulent compressible Mach number. 

2.3. Wall finctions 

The derivation of the above turbulence transport equations is made under the hypothesis of high 
Reynolds number flows. Thus, in regions close to the wall, such as in the viscous sublayer where 
molecular effects are important, these equations are not valid and wall functions6 are used to model this 
near wall region. The equations for the mean flow and the turbulence scales are solved up to a distance 
6 away from the wall. Near the wall, the flow is assumed to obey wall laws obtained from an 
integration of the boundary layer equations. By introducing the dimensionless wall distance y+ and the 
friction velocity uf: 

Uf = PUfYIP.  (16) 
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The wall laws can be written as 

u . t  1 1 u l=K l o g b + ) + C i f y +  > 11.6, 
(17) 

where Z.t  is the tangential velocity. The constants of the logarithmic law are the Von Karman universal 
constants K and C respectively equal to 0.419 and 5.445. For the turbulent quantities, equilibrium 
between the production and the dissipation rate gives the proper boundary conditions: 

Those laws have been established for incompressible flows but experiments with the compressible 
boundary layer'* show that they remain valid in the absence of strong density variation. 

3 .  NUMERICAL RESOLUTION 

3. I .  MUSCL method for the mean jow equations 

The computational domain is divided into triangular elements to build a finite element mesh. Finite 
volume cells are constructed around each vertex by joining the inertial centers of the neighbouring 
triangles with the middles of the sides (Figure 1). The interpolation uses the classical PI basis functions 
Ni (piecewise linear on the finite element mesh) and the finite volume functions 4, (the characteristic 
function of the cells Ci) 

$i(M) == 1,  M E C;, $;(M) = 0, M @ Ci. (19) 

The use of a flux splitting technique requires a finite volume discretization of the hyperbolic part of the 
equations (using a test function $i). The diffusive and the source terms are discretized using a Galerkin 

1 

Figure 1. Barycentric cell around a vertex 
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method with a finite element interpolation (using a test function Ni). The discrete variational 
formulation of (2) is then written as 

which gives, after integration by parts, 

F(W)  dl = - lQ R.grad(Ni) ds + 1 R.n Ni dl. 
r 

With a centred discretization for the convective terms, this formulation is equivalent to a full Galerkin 
finite element f~rmulation’~ with a mass lumping technique for the time derivative term. The 
upwinding discretization is obtained by using a Roe’s flux splitting’ technique, which is an upwind 
scheme along the characteristic lines. This solver is one of the simplest and more accurate scheme for 
supersonic flows up to a Mach number of 3. Its spatial precision is only first order accurate which 
entails a great numerical diffusivity. A second order scheme is obtained with a MUSCL method 
introduced by Van Leer’9320 using an approximate gradient of Wat each vertex, derived from the 
Galerkin linear interpolation of Wover all the neighbouring triangles. To preserve the TVD property of 
this scheme, a Van Albada-Van Leer limiter is used.” Turbulence equations are similarly discretized 
using a mixed finite volume/finite element method 

The flux over the boundary aC, of the cell i is the sum of the fluxes over the intersection aC,, of the cell 
i and each of its neighbouring cell j :  

J ,  F’(W).n dl = 1 F’(W’).n dl. (23) 

pu.nW’ ds = w,’ lacy z . n  d~ if 

J neighbows of I a c ~  

The convective fluxes between two neighbour cells C, and C, (Figure 2) are calculated using the mass 
flux 

pu.n ds > 0, (24) 

U - 

Figure 2. Intersection between two neighbour cells C, and C, 
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$.rids < 0. 
ac, 

The viscous terms and the source terms are discretized using the finite element formulation. 

673 

(25) 

3.2. Time stepping 

Steady solutions of the system (2), ( I  1) are sought by an unsteady process. The time integration uses 
an explicit four-steps Runge-Kutta method and a local time step given by a local Courant condition. At 
each time step, the mean flow equations are first solved and then the turbulence scales equations. The 
computations are performed on an Alliant 2800 using a single processor. With the explicit scheme, it 
takes several hours of cpu time to converge starting from constant initial fields for a mesh with 4000 
nodes (compression ramp). An implicit scheme is under development to reduce that computational 
time. 

3.3. Boundary conditions 

The computational domain is bounded by an inflow boundary, an outflow boundary, a free boundary 
and a wall boundary. The boundary conditions are not imposed as Dirichlet conditions but are used to 
compute the fluxes and the stresses on the boundaries. 

(i) On the free boundaries, a zero flux condition is applied for the velocity. 
(ii) To calculate the inflow fluxes, farfield values deduced from the experiments are introduced. 

The convective fluxes are calculated from the farfield values and from the inner values using a 
Steger-Warning splitting. The viscous fluxes are assumed to be negligible. Outflow fluxes are 
similarly computed but in the farfield, all the values except the pressure are set equal to the 
inner values. 

(iii) On the wall, boundary conditions for the velocity are imposed through the variational 
formulation. A first estimation of the skin velocity ur is computed from the tangential velocity 
using the linear law. 

- 
Uf =& 

If yf > 1 1.6 a new evaluation of ur is computed from the logarithmic law (1 7) using a Newton 
method. Knowing the skin velocity, the viscous stress rp = pu;, which appears in the 
variational formulation of the equations (21) (term R.n), is imposed on each cell boundary Ti. 

jr, rp.tNi dl = pu3.tNj dl 
Jrt 

For and T, the relations (1 8) are used as Dirichlet boundary conditions. 

4. NUMERICAL RESULTS 

4. I .  Turbulent $ow over a backward facing step 

The first validation test case is the classical flow over a backward facing step. Experimental data 
from Kim et aL2' are also available. Comparisons have been done with numerical data obtained on the 
same mesh using an incompressible finite element method.22 The computational domain and the finite 
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x=-4 x=o x=16 

Figure 3. Geometry of the backward facing step and finite element mesh (2101 nodes) 

element mesh are drawn in Figure 3. The velocity U, at the entrance of the pipe is equal to 18 d s  and 
the Reynolds number is equal to 44580. To simulate an incompressible flow, the computation is done 
with a small Mach number of 0.1. The results are non dimensionalized by the velocity at the entrance 
U,, and by the height of the step h.  As the flow is incompressible, the classical k-8 model is used in the 
calculation. 

The flow presents a recirculation bubble behind the step. Streamlines in the recirculation bubble are 
shown in Figure 4. The two calculations predict the same recirculation length with a lower velocity in 
the bubble in our results. This length ( L  x 5 h )  is underpredicted with regard to the experimental length 
(L % 7h). Numerous numerical simulations have already shown that the classical k-E model with wall 
h c t i o n s  underpredicts the length of the recirculation. On the one part, the Boussinesq hypothesis is 
no more valid when the streamlines are too curved and on the other part, the wall laws don't take into 
account the pressure gradient which is important in the reattachment region. The transversal velocity 
and kinetic energy profiles are plotted in two sections: (x = 5.3h, x = 10.7h) for the velocity and 
x = 7.7h, x = 10.3) for the kinetic energy (Figures 5-8). The two numerical results are in reasonable 
agreement. The under prediction of the recirculation bubble produces a gap between the experimental 
and the numerical results in the downstream profiles. 

4.2. Compression ramp 

The compression ramp is a complex test case which embodies all the difficulties of turbulence with a 
shockboundary layer interaction and compressibility effects. This problem has practical applications 
in aerothermodynamic and in turbomachinery. This test case has been chosen to test the capacity of the 
method to predict the correct shock and the recirculation bubble induced by the shockhoundary layer 
interaction. Experiments have been done by Settles23 for the two dimensional interaction generated by 
compression ramps with different angles. In this article, two angles are considered: 8" and 24". The 
uniform freestream conditions correspond to a Mach number equal to 2.85 and a Reynolds number 
equal to 1.7 x 1 06. The incoming turbulent boundary layer thickness a0 is nearly equal to 2.3 cm and 
the skin friction coefficient to lop3. In the case of the 8" ramp, there is a shock wave with no 
discernible flow separation. In the case of the 24" ramp, there is a separated region and a detached 
shock wave in the front of the ramp. The extend of the recirculation zone as measured along the model 
surface is slightly more than twice the incoming boundary layer thickness. 

The shape of the computational domain is shown on Figure 9. The inflow boundary is located ahead 
of the comer in a region of no upstream influence (lodo) and the outflow boundary is chosen 

Figure 4. Streamlines in the recirculation bubble 



INTRODUCTION OF TURBULENT MODEL 675 

3 

2.5 

2 

2 1 5  

I 

0s  

0 

ih 

Figure 5. Mean axial velocity profiles at x = 5.3h 

sufficiently far from the comer (7~5~).  The height of the computional domain (12a0) is chosen so that 
freestream conditions apply along the upper boundary. The upstream boundary conditions are obtained 
from a calculation of the development of a flat plate turbulent boundary layer with a skin friction 
coefficient of lop3.  A mesh with 2400 nodes is used in the 8" case and a mesh, refined in the 
boundary layer (Figure lo), is used in the 24" case. In the 24" case, to improve the results, 
computations have also been done with the Coleman-Manso~r'~ k-6 model. 

For the 8" case, comparisons with the experimental wall pressure are shown in Figure 11 and the 
computed and experimental skin frictions distribution in Figure 13. For the pressure, the agreement 
with experimental data is good. The angle of the shock (26") is in good agreement with the theoretical 
angle given by the Euler theory, indicating that the Roe solver calculates the shock precisely. The 

Figure 6. Mean axial velocity profiles at x = 10.7h 
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Figure 7. Turbulent kinetic energy profiles at x = 7.7h 
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Figure 8. Turbulent kinetic energy profiles at x =  10.3h 

SHOCK SYSTEM EDGE 

Figure 9. Sketch of supersonic compression comer shock-wave boundary layer-interaction experiment 
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Figure 10. The finite element mesh for the 24" compression ramp (5886 nodes) 

computed outgoing skin fnction coefficient C, values are higher than the experimental values. For the 
24" case, the wall pressure and the skin friction distributions are respectively presented in Figures 12 
and 14. The numerical values of Viergas et aL4 have also been plotted. The pressure plateau due to the 
separated region is underpredicted by the k-E model. The Coleman-Mansour model gives a better 
prediction for the location of the separation. The angle of the shock is also in good agreement with the 
Euler theory. Measured and computed velocity in three different sections are shown on the Figures 15, 
16, 17. The numerical profiles are retarded in comparison with the experimental profiles, although the 
results are slightly better with the Coleman-Mansour model. This comportment has been already 
noticed by Viergas et a2.4 for the two equations models. It is an indication that the k-E model with wall 
functions does not predict well the recovery region. 
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Figure 1 1. Comparison of experimental surface static pressure with computations for the 8" compression ramp 
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Figure 12. Comparison of experimental surface static pressure with computations for the 24" compression ramp 

Those results prove the capacity of the numerical method to predict compressible turbulent flows 
with shocks. To improve the prediction in the 24" case new models must be tested (low Reynolds 
models and new compressible terms). 

5.  CONCLUSION 

A numerical method to solve turbulent compressible flows has been described. The turbulence is 
modeled by a k-E model with wall functions. The numerical method is an extension of a finite volume/ 
finite element method developed to solve the Euler equations. A special treatment of the boundary 
conditions at the solid walls is introduced in the variational formulation. Then, two validation turbulent 
test cases are presented: an incompressible flow over a backward facing step to validate the classical k-E 
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Figure 13. Comparison of experimental skin friction distributions with computations for the 8" compression ramp 
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Figure 14. Comparison of experimental skin Friction distributions with computations for the 24" compression ramp 

model and a supersonic flow over a compression ramp to validate an extension of the k-E model for 
compressible flows. Comparisons have been performed with experimental and numerical data. The 
principal characteristics of the flow are well predicted (the shock waves and the separated regions) and 
our results are in reasonable agreement with the other numerical results. But failure of the classical k-E 
models to predict recovery regions indicates that the turbulent model need to be improved in those 
regions. The extension of the k-E model for compressible flows is very promising and allow this 
numerical technique to be used to predict complex compressible flows as in the combustion chamber 
of gas turbine engines. However, to improve the numerical efficiency of the method, an implicit 
scheme is under development. To improve the prediction, new turbulent models are also tested, 
especially for the near wall region (low Reynolds k-E models). 

I 

8 

4 g -6 ,. 

Figure IS. Comparison of computations and velocity profiles measurements for the 24" compression ramp at the section 
X =  - 1.45 
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Figure 16. Comparison of computations and velocity profiles measurements for the 24” compression ramp at the section x = 0 

Figure 17. Comparison of computations and velocity profiles measurements for the 24” compression ramp at the section x = 2.89 
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